Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation

Autor: Andrey Stadnichenko, Dmitry Svintsitskiy, Lidiya Kibis, Elizaveta Fedorova, Olga Stonkus, Elena Slavinskaya, Ivan Lapin, Elena Fakhrutdinova, Valery Svetlichnyi, Anatoly Romanenko, Dmitry Doronkin, Vasyl Marchuk, Jan-Dierk Grunwaldt, Andrei Boronin
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Sciences, Vol 10, Iss 14, p 4699 (2020)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app10144699
Popis: A set of physicochemical methods, including X-ray photoelectron spectroscopy (XPS), X-ray diraction, electron microscopy and X-ray absorption spectroscopy, was applied to study Pt/TiO2 catalysts prepared by impregnation using a commercial TiO2-P25 support and a support produced by pulsed laser ablation in liquid (PLA). The Pt/TiO2-PLA catalysts showed increased thermal stability due to the localization of the highly dispersed platinum species at the intercrystalline boundaries of the support particles. In contrast, the Pt/TiO2-P25 catalysts were characterized by uniform distributionof the Pt species over the support. Analysis of Pt4f XP spectra shows that oxidized Pt2+ and Pt4+ species are formed in the Pt/TiO2-P25 catalysts, while the platinum oxidation state in the Pt/TiO2-PLA catalysts is lower due to stronger interaction of the active component with the support due to stronginteraction via Pt-O-Ti bonds. The Pt4f XP spectra of the samples after reaction show Pt2+ and metallic platinum, which is the catalytically active species. The study of the catalytic properties in ammonia oxidation showed that, unlike the catalysts prepared with a commercial support, the Pt/TiO2-PLA samples show higher stability during catalysis and significantly higher selectivity to N2 in a wide temperature range of 200–400 C.
Databáze: Directory of Open Access Journals