On weakly S-prime ideals of commutative rings

Autor: Almahdi Fuad Ali Ahmed, Bouba El Mehdi, Tamekkante Mohammed
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 29, Iss 2, Pp 173-186 (2021)
Druh dokumentu: article
ISSN: 1844-0835
DOI: 10.2478/auom-2021-0024
Popis: Let R be a commutative ring with identity and S be a multiplicative subset of R. In this paper, we introduce the concept of weakly S-prime ideals which is a generalization of weakly prime ideals. Let P be an ideal of R disjoint with S. We say that P is a weakly S-prime ideal of R if there exists an s ∈ S such that, for all a, b ∈ R, if 0 ≠ ab ∈ P, then sa ∈ P or sb ∈ P. We show that weakly S-prime ideals have many analog properties to these of weakly prime ideals. We also use this new class of ideals to characterize S-Noetherian rings and S-principal ideal rings.
Databáze: Directory of Open Access Journals