Autor: |
Almahdi Fuad Ali Ahmed, Bouba El Mehdi, Tamekkante Mohammed |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 29, Iss 2, Pp 173-186 (2021) |
Druh dokumentu: |
article |
ISSN: |
1844-0835 |
DOI: |
10.2478/auom-2021-0024 |
Popis: |
Let R be a commutative ring with identity and S be a multiplicative subset of R. In this paper, we introduce the concept of weakly S-prime ideals which is a generalization of weakly prime ideals. Let P be an ideal of R disjoint with S. We say that P is a weakly S-prime ideal of R if there exists an s ∈ S such that, for all a, b ∈ R, if 0 ≠ ab ∈ P, then sa ∈ P or sb ∈ P. We show that weakly S-prime ideals have many analog properties to these of weakly prime ideals. We also use this new class of ideals to characterize S-Noetherian rings and S-principal ideal rings. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|