ON THE BEST APPROXIMATION OF THE INFINITESIMAL GENERATOR OF A CONTRACTION SEMIGROUP IN A HILBERT SPACE
Autor: | Elena E. Berdysheva, Maria A. Filatova |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Ural Mathematical Journal, Vol 3, Iss 2 (2017) |
Druh dokumentu: | article |
ISSN: | 2414-3952 24772984 |
DOI: | 10.15826/umj.2017.2.006 |
Popis: | Let \(A\) be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert space \(H\). We give an upper estimate for the best approximation of the operator \(A\) by bounded linear operators with a prescribed norm in the space \(H\) on the class \(Q_2 = \{x\in \mathcal{D}(A^2) : \|A^2 x\| \leq 1\}\), where \(\mathcal D(A^2)\) denotes the domain of \(A^2\). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |