Traction Synchronous Homopolar Motor: Simplified Computation Technique and Experimental Validation

Autor: Vladimir Dmitrievskii, Vladimir Prakht, Alecksey Anuchin, Vadim Kazakbaev
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE Access, Vol 8, Pp 185112-185120 (2020)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2020.3029740
Popis: Synchronous homopolar motors (SHMs) have been attracting the attention of researchers for many decades. Various mathematical models of SHM have been proposed to deal with its complicated magnetic circuit. Among them, there are time-consuming 3D finite element models (FEM), equivalent circuit models neglecting some significant features of the machine design, and 2D FEM models with virtual excitation winding distorting its magnetic field picture. This paper proposes a novel 2D FEM of SHM and shows that since there are no sources of excitation in the cross-sections of the rotor and stator stacks, no virtual elements are required. This model uses the general solution of the Gauss's law for magnetism containing excitation flux. The model is based on a set of magnetostatic boundary value problems for various rotor positions. The set of boundary problems is completed with the excitation equivalent circuit. The losses in the armature and field windings and the stator and rotor magnetic cores are computed in postprocessing. All these computations are carried out for a single combination of stator and rotor stack. A symmetrization algorithm is proposed to extend the obtained results to the whole SHM. A comparison of the theoretical and experimental data for a nine-phase three-section 320 kW SHM is carried out. These SHMs were used in a mining truck with a carrying capacity of 90 tons.
Databáze: Directory of Open Access Journals