Deep Learning Approaches for Detecting of Nascent Geographic Atrophy in Age-Related Macular Degeneration

Autor: Heming Yao, PhD, Zhichao Wu, BAppSc(Optom), PhD, Simon S. Gao, PhD, Robyn H. Guymer, MBBS, PhD, Verena Steffen, MSc, Hao Chen, PhD, Mohsen Hejrati, PhD, Miao Zhang, PhD
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Ophthalmology Science, Vol 4, Iss 3, Pp 100428- (2024)
Druh dokumentu: article
ISSN: 2666-9145
DOI: 10.1016/j.xops.2023.100428
Popis: Purpose: Nascent geographic atrophy (nGA) refers to specific features seen on OCT B-scans, which are strongly associated with the future development of geographic atrophy (GA). This study sought to develop a deep learning model to screen OCT B-scans for nGA that warrant further manual review (an artificial intelligence [AI]-assisted approach), and to determine the extent of reduction in OCT B-scan load requiring manual review while maintaining near-perfect nGA detection performance. Design: Development and evaluation of a deep learning model. Participants: One thousand eight hundred and eighty four OCT volume scans (49 B-scans per volume) without neovascular age-related macular degeneration from 280 eyes of 140 participants with bilateral large drusen at baseline, seen at 6-monthly intervals up to a 36-month period (from which 40 eyes developed nGA). Methods: OCT volume and B-scans were labeled for the presence of nGA. Their presence at the volume scan level provided the ground truth for training a deep learning model to identify OCT B-scans that potentially showed nGA requiring manual review. Using a threshold that provided a sensitivity of 0.99, the B-scans identified were assigned the ground truth label with the AI-assisted approach. The performance of this approach for detecting nGA across all visits, or at the visit of nGA onset, was evaluated using fivefold cross-validation. Main Outcome Measures: Sensitivity for detecting nGA, and proportion of OCT B-scans requiring manual review. Results: The AI-assisted approach (utilizing outputs from the deep learning model to guide manual review) had a sensitivity of 0.97 (95% confidence interval [CI] = 0.93–1.00) and 0.95 (95% CI = 0.87–1.00) for detecting nGA across all visits and at the visit of nGA onset, respectively, when requiring manual review of only 2.7% and 1.9% of selected OCT B-scans, respectively. Conclusions: A deep learning model could be used to enable near-perfect detection of nGA onset while reducing the number of OCT B-scans requiring manual review by over 50-fold. This AI-assisted approach shows promise for substantially reducing the current burden of manual review of OCT B-scans to detect this crucial feature that portends future development of GA. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Databáze: Directory of Open Access Journals