A Synchronization Criterion for Two Hindmarsh-Rose Neurons with Linear and Nonlinear Coupling Functions Based on the Laplace Transform Method

Autor: Chunlin Su, Bin Zhen, Zigen Song
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Neural Plasticity, Vol 2021 (2021)
Druh dokumentu: article
ISSN: 2090-5904
1687-5443
DOI: 10.1155/2021/6692132
Popis: In this paper, an analytical criterion is proposed to investigate the synchronization between two Hindmarsh-Rose neurons with linear and nonlinear coupling functions based on the Laplace transform method. Different from previous works, the synchronization error system is expressed in its integral form, which is more convenient to analyze. The synchronization problem of two HR coupled neurons is ultimately converted into the stability problem of roots to a nonlinear algebraic equation. Then, an analytical criterion for synchronization between the two HR neurons can be given by using the Routh-Hurwitz criterion. Numerical simulations show that the synchronization criterion derived in this paper is valid, regardless of the periodic spikes or burst-spike chaotic behavior of the two HR neurons. Furthermore, the analytical results have almost the same accuracy as the conditional Lyapunov method. In addition, the calculation quantities always are small no matter the linear and nonlinear coupling functions, which show that the approach presented in this paper is easy to be developed to study synchronization between a large number of HR neurons.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje