Impregnated chitin biopolymer with magnetic nanoparticles to immobilize dye from aqueous media as a simple, rapid and efficient composite photocatalyst

Autor: Somaya A. Elsayed, Ibrahim E. T. El-Sayed, Maha A. Tony
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Applied Water Science, Vol 12, Iss 11, Pp 1-16 (2022)
Druh dokumentu: article
ISSN: 2190-5487
2190-5495
DOI: 10.1007/s13201-022-01776-3
Popis: Abstract In the sight of the ever-increasing significance of green-based iron nanoparticles especially in wastewater treatment applications is a compelling reason for their use in a waste prevention opportunity, safer environment and benign precursor materials become the vital considerations. Hence, in the current investigation, an efficient co-precipitation technique was applied to prepare highly active chitosan-coated magnetic iron oxide that is applied for wastewater remediation. In the current investigation, chitosan coupled with magnetite nanoparticles namely CS-M was attained by coupling chitosan (CS) with magnetite nanoparticles via simple co-precipitation in different weight proportions and the attained samples labeled as CS-M-(2:1), CS-M-(3:1) and CS-M-(1:2). The structure, morphology and characteristics of the prepared samples were characterized using X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The catalytic oxidation activity of the prepared samples was investigated to eliminate Basic Blue 9 (BB9) dye from aqueous effluent as simulated textile polluted stream. The experimental data exposed almost BB9 dye emanation. The system parameters revealed the maximal BB9 oxidation (99%) was attained within 2 h of irradiance time. Box–Behnken design factorial design based on response surface methodology was applied to optimize the Fenton’s system (CS-M-(2:1)/H2O2) parameters to maximize the efficiency 2.4 and 767 mg/L of CS-M and H2O2, respectively, at pH 7.0. The experimental data exposed that CS-M-(2:1) is signified as the optimal catalyst mixture. The kinetic data verify the oxidation system follows the second-order reaction kinetic model. Further, thermodynamic variables predicted that the reaction is endothermic and non-spontaneous in nature. Hence, the catalyst could be environmental benign and the evaluation introduces the role of engineers and chemists in a world for a sustainable material use.
Databáze: Directory of Open Access Journals