Autor: |
Natsuko Miura, Kana Miyamoto, Yuta Ohtani, Kenshi Yaginuma, Shunsuke Aburaya, Yoshinori Kitagawa, Wataru Aoki, Mitsuyoshi Ueda |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
AMB Express, Vol 9, Iss 1, Pp 1-8 (2019) |
Druh dokumentu: |
article |
ISSN: |
2191-0855 |
DOI: |
10.1186/s13568-019-0833-2 |
Popis: |
Abstract Easy preparation of chimeric nanobodies with various scaffolds is important for customizing abilities of nanobodies toward practical utilization. To accomplish high-throughput production of various nanobodies, utilization of microbes is an attractive option. In the present study, various chimeric nanobodies were prepared using the methylotrophic yeast Pichia pastoris. We designed chimeric nanobodies with complementarity-determining regions (CDRs) against green fluorescent protein (GFP) or cluster of differentiation 4 (CD4) based on the scaffold of GFP-nanobody. FLAG-tagged chimeric nanobodies were prepared by one-step cloning and produced using P. pastoris. Secreted chimeric nanobodies were purified from the culture media of P. pastoris transformants. Relative binding abilities of purified chimeric nanobodies to GFP and CD4 was tested using a BIACORE T-200. P. pastoris successfully produced a high yield of FLAG-tagged chimeric nanobodies. FLAG-tagged GFP- and CD4-nanobodies were shown to specifically bind to GFP and CD4, respectively. Chimeric nanobodies, in which the CDR2 or 3 of GFP-nanobody was replaced with CDRs of CD4-nanobody, acquired the ability to bind to CD4 without binding to GFP. These results demonstrate successful production of functional chimeric nanobodies using P. pastoris. These results also suggest that swapping of CDRs, especially CDRs 2 or 3, potentially enables a novel method of creating nanobodies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|