Autor: |
Yunfei Wang, Shuangxi Liu, Zhuo Ren, Bo Ma, Junlin Mu, Linlin Sun, Hongjian Zhang, Jinxing Wang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Agronomy, Vol 13, Iss 11, p 2806 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-4395 |
DOI: |
10.3390/agronomy13112806 |
Popis: |
The segmentation of individual pests is a prerequisite for pest feature extraction and identification. To address the issue of pest adhesion in the apple orchard pest identification process, this research proposed a pest adhesion image segmentation method based on Gaussian Mixture Model with Density and Curvature Weighting (GMM-DC). First, in the HSV color space, an image was desaturated by adjusting the hue and inverting to mitigate threshold crossing points. Subsequently, threshold segmentation and contour selection methods were used to separate the image background. Next, a shape factor was introduced to determine the regions and quantities of adhering pests, thereby determining the number of model clustering clusters. Then, point cloud reconstruction was performed based on the color and spatial distribution features of the pests. To construct the GMM-DC segmentation model, a spatial density (SD) and spatial curvature (SC) information function were designed and embedded in the GMM. Finally, experimental analysis was conducted on the collected apple orchard pest images. The results showed that GMM-DC achieved an average accurate segmentation rate of 95.75%, an average over-segmentation rate of 2.83%, and an average under-segmentation rate of 1.42%. These results significantly outperformed traditional image segmentation methods. In addition, the original and improved Mask R-CNN models were used as recognition models, and the mean Average Precision was used as the evaluation metric. Recognition experiments were conducted on pest images with and without the proposed method. The results show the mean Average Precision for pest images segmented with the proposed method as 92.43% and 96.75%. This indicates an improvement of 13.01% and 12.18% in average recognition accuracy, respectively. The experimental results demonstrate that this method provides a theoretical and methodological foundation for accurate pest identification in orchards. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|