Autor: |
Ke Song, Wendong Zhu, Zhenxi Zhang, Bin Liu, Meiling Zhang, Tinglong Tang, Jie Liang, Weifei Wu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-71288-4 |
Popis: |
Abstract CT and MR tools are commonly used to diagnose lumbar fractures (LF). However, numerous limitations have been found in practice. The aims of this study were to innovate and develop a spinal disease-specific neural network and to evaluate whether synthetic MRI of the LF affected clinical diagnosis and treatment strategies. A total of 675 LF patients who met the inclusion and exclusion criteria were included in the study. For each participant, two mid-sagittal CT and T2-weighted MR images were selected; 1350 pairs of LF images were also included. A new Self-pix based on Pix2pix and Self-Attention was constructed. A total of 1350 pairs of CT and MR images, which were randomly divided into a training group (1147 pairs) and a test group (203 pairs), were fed into Pix2pix and Self-pix. The quantitative evaluation included PSNR and SSIM (PSNR1 and SSIM1: real MR images and Pix2pix-generated MR images; PSNR2 and SSIM2: real MR images and Self-pix-generated MR images). The qualitative evaluation, including accurate diagnosis of acute fractures and accurate selection of treatment strategies based on Self-pix-generated MRI, was performed by three spine surgeons. In the LF group, PSNR1 and PSNR2 were 10.884 and 11.021 (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|