POTENTIAL OF NON-CALIBRATED UAV-BASED RGB IMAGERY FOR FORAGE MONITORING: CASE STUDY AT THE RENGEN LONG-TERM GRASSLAND EXPERIMENT (RGE), GERMANY
Autor: | G. Bareth, U. Lussem, J. Menne, J. Hollberg, J. Schellberg |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W13, Pp 203-206 (2019) |
Druh dokumentu: | article |
ISSN: | 1682-1750 2194-9034 |
DOI: | 10.5194/isprs-archives-XLII-2-W13-203-2019 |
Popis: | Forage monitoring in grassland is an important task to support management decisions. Spatial data on (i) yield,(ii) quality, and (iii) floristic composition are of interest. The spatio-temporal variability in grasslands is significant and requires fast and low-cost methods for data delivery. Therefore, the overarching aim of this contribution is the investigation of low-cost and non-calibrated UAV-derived RGB imagery for forage monitoring. Study area is the Rengen Grassland Experiment (RGE) in Germany which is a long-term field experiment since 1941. Due to the experiment layout, destructive biomass sampling during the growing period was not possible. Hence, non-destructive Rising Plate Meter (RPM) measurements, which are a common method to estimate biomass in grasslands, were carried out. UAV campaigns with a Canon Powershot 110 mounted on a DJI Phantom 2 were conducted in the first growing season in 2014. From the RGB imagery, the RGB vegetation index (RGBVI) and the Grassland Index (GrassI) introduced by Bendig et al. (2015) and Bareth et al. (2015), respectively, were computed. The RGBVI and the GrassI perform very well against the RPM measurements resulting in R2 of 0.84 and 0.9, respectively. These results indicate the potential of low-cost UAV methods for grassland monitoring and correspond well to the studies of Viljanen et al. (2018) and Näsi et al. (2018). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |