Posterior tibial slope influences joint mechanics and soft tissue loading after total knee arthroplasty

Autor: Ning Guo, Colin R. Smith, Pascal Schütz, Adam Trepczynski, Philippe Moewis, Philipp Damm, Allan Maas, Thomas M. Grupp, William R. Taylor, Seyyed Hamed Hosseini Nasab
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Druh dokumentu: article
ISSN: 2296-4185
DOI: 10.3389/fbioe.2024.1352794
Popis: As a solution to restore knee function and reduce pain, the demand for Total Knee Arthroplasty (TKA) has dramatically increased in recent decades. The high rates of dissatisfaction and revision makes it crucially important to understand the relationships between surgical factors and post-surgery knee performance. Tibial implant alignment in the sagittal plane (i.e., posterior tibia slope, PTS) is thought to play a key role in quadriceps muscle forces and contact conditions of the joint, but the underlying mechanisms and potential consequences are poorly understood. To address this biomechanical challenge, we developed a subject-specific musculoskeletal model based on the bone anatomy and precise implantation data provided within the CAMS-Knee datasets. Using the novel COMAK algorithm that concurrently optimizes joint kinematics, together with contact mechanics, and muscle and ligament forces, enabled highly accurate estimations of the knee joint biomechanics (RMSE
Databáze: Directory of Open Access Journals