Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon

Autor: Jinglin Li, Bowen Sheng, Yiqing Chen, Jiajia Yang, Ping Wang, Yixin Li, Tianqi Yu, Hu Pan, Liang Qiu, Ying Li, Jun Song, Lei Zhu, Xinqiang Wang, Zhen Huang, Baowen Zhou
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-024-51810-y
Popis: Abstract Photo-thermal-coupling ammonia decomposition presents a promising strategy for utilizing the full-spectrum to address the H2 storage and transportation issues. Herein, we exhibit a photo-thermal-catalytic architecture by assembling gallium nitride nanowires-supported ruthenium nanoparticles on a silicon for extracting hydrogen from ammonia aqueous solution in a batch reactor with only sunlight input. The photoexcited charge carriers make a predomination contribution on H2 activity with the assistance of the photothermal effect. Upon concentrated light illumination, the architecture significantly reduces the activation energy barrier from 1.08 to 0.22 eV. As a result, a high turnover number of 3,400,750 is reported during 400 h of continuous light illumination, and the H2 activity per hour is nearly 1000 times higher than that under the pure thermo-catalytic conditions. The reaction mechanism is extensively studied by coordinating experiments, spectroscopic characterizations, and density functional theory calculation. Outdoor tests validate the viability of such a multifunctional architecture for ammonia decomposition toward H2 under natural sunlight.
Databáze: Directory of Open Access Journals