Autor: |
Kapranova Anna, Lebedev Anton, Melzer Alexander |
Jazyk: |
English<br />French |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
E3S Web of Conferences, Vol 220, p 01073 (2020) |
Druh dokumentu: |
article |
ISSN: |
2267-1242 |
DOI: |
10.1051/e3sconf/202022001073 |
Popis: |
The purpose of this work is to analyze the coefficient of hydraulic resistance in the separator of a direct-flow control valve with a rotary lock according to the approximation of the superposition of pressure losses in elementary local resistances. In contrast to the known methods of constructing simulation models, the proposed analytical method of calculation is based on a qualitative assessment of the specified coefficient in the implementation of throttling of fluid flows in the “separator-rotary lock” unit, depending on the design and operating parameters of the process. It was found that, within the selected range of variation of the separator parameters, an increase in the valve opening degree from 20% to 50% leads to a decrease in the hydraulic resistance coefficient by 19.6 times, and an increase in this degree from 20% to 100% is associated with a 42.4-fold decrease in the studied characteristic. This circumstance justifies the effectiveness of the proposed method for throttling the flows of the working medium. The results obtained are used to study the influence of the main design parameters of the “separator-butterfly valve” unit on the flow capacity of the control valve and are relevant for stochastic modeling of the hydrodynamic cavitation process. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|