Autor: |
Williams Mobolaji |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Computational and Mathematical Biophysics, Vol 10, Iss 1, Pp 123-166 (2022) |
Druh dokumentu: |
article |
ISSN: |
2544-7297 |
DOI: |
10.1515/cmb-2022-0137 |
Popis: |
We introduce a derangement model of ligand-receptor binding that allows us to quantitatively frame the question “How can ligands seek out and bind to their optimal receptor sites in a sea of other competing ligands and suboptimal receptor sites?” To answer the question, we first derive a formula to count the number of partial generalized derangements in a list, thus extending the derangement result of Gillis and Even. We then compute the general partition function for the ligand-receptor system and derive the equilibrium expressions for the average number of bound ligands and the average number of optimally bound ligands. A visual model of squares assembling onto a grid allows us to easily identify fully optimal bound states. Equilibrium simulations of the system reveal its extremes to be one of two types, qualitatively distinguished by whether optimal ligand-receptor binding is the dominant form of binding at all temperatures and quantitatively distinguished by the relative values of two critical temperatures. One of those system types (termed “search-limited,” as it was in previous work) does not exhibit kinetic traps and we thus infer that biomolecular systems where optimal ligand-receptor binding is functionally important are likely to be search-limited. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|