Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability

Autor: Wei-Ching Liang, Hongkang Xi, Dawei Sun, Luigi D’Ascenzo, Jonathan Zarzar, Nicole Stephens, Ryan Cook, Yinyin Li, Zhengmao Ye, Marissa Matsumoto, Jian Payandeh, Matthieu Masureel, Yan Wu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: mAbs, Vol 16, Iss 1 (2024)
Druh dokumentu: article
ISSN: 19420862
1942-0870
1942-0862
DOI: 10.1080/19420862.2024.2309685
Popis: ABSTRACTRabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities.
Databáze: Directory of Open Access Journals