Enhanced fingerprint classification through modified PCA with SVD and invariant moments

Autor: Ala Balti, Abdelaziz Hamdi, Sabeur Abid, Mohamed Moncef Ben Khelifa, Mounir Sayadi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Artificial Intelligence, Vol 7 (2024)
Druh dokumentu: article
ISSN: 2624-8212
DOI: 10.3389/frai.2024.1433494
Popis: This research introduces a novel MOMENTS-SVD vector for fingerprint identification, combining invariant moments and SVD (Singular Value Decomposition), enhanced by a modified PCA (Principal Component Analysis). Our method extracts unique fingerprint features using SVD and invariant moments, followed by classification with Euclidean distance and neural networks. The MOMENTS-SVD vector reduces computational complexity by outperforming current models. Using the Equal Error Rate (EER) and ROC curve, a comparative study across databases (CASIA V5, FVC 2002, 2004, 2006) assesses our method against ResNet, VGG19, Neuro Fuzzy, DCT Features, and Invariant Moments, proving enhanced accuracy and robustness.
Databáze: Directory of Open Access Journals