Genome-wide association study of susceptibility to hospitalised respiratory infections [version 2; peer review: 1 approved, 2 approved with reservations]

Autor: Sina A. Gharib, Louise V. Wain, Tõnu Esko, Gail P. Jarvik, Scott Hebbring, Eric B. Larson, Sarah H. Landis, Ruth J.F. Loos, Jiangyuan Liu, Caroline Hayward, Arden Moscati, Yuan Luo, Bahram Namjou, Hana Mullerova, Marjo-Riitta Järvelin, Jennifer K. Quint, Eeva Sliz, Marylyn D. Ritchie, Laurent Thomas, Ian B. Stanaway, Kristian Hveem, David Michalovich, Ian P. Hall, James F. Wilson, Jing Chen, Alexander T. Williams, Martin D. Tobin, Joanna C. Betts, Hardeep Naghra-van Gijzel, Richard Packer, Edith M. Hessel, Astrid J. Yeo, Nicola F. Reeve, Bjørn Olav Åsvold, Erik Abner, Archie Campbell, Traci M. Bartz, Juha Auvinen, Catherine John, Ben Brumpton, Yuki Bradford, Su Chu, David J. Porteous, Nick Shrine, Michael H. Cho, QiPing Feng, David R. Crosslin
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Wellcome Open Research, Vol 6 (2023)
Druh dokumentu: article
ISSN: 2398-502X
DOI: 10.12688/wellcomeopenres.17230.2
Popis: Background: Globally, respiratory infections contribute to significant morbidity and mortality. However, genetic determinants of respiratory infections are understudied and remain poorly understood. Methods: We conducted a genome-wide association study in 19,459 hospitalised respiratory infection cases and 101,438 controls from UK Biobank (Stage 1). We followed-up well-imputed top signals from our Stage 1 analysis in 50,912 respiratory infection cases and 150,442 controls from 11 cohorts (Stage 2). We aggregated effect estimates across studies using inverse variance-weighted meta-analyses. Additionally, we investigated the function of the top signals in order to gain understanding of the underlying biological mechanisms. Results: From our Stage 1 analysis, we report 56 signals at P
Databáze: Directory of Open Access Journals