Association of fine particulate matter (PM2.5) exposure and chronic kidney disease outcomes: a systematic review and meta-analysis

Autor: Wannasit Wathanavasin, Athiphat Banjongjit, Jeerath Phannajit, Somchai Eiam-Ong, Paweena Susantitaphong
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-51554-1
Popis: Abstract Several studies have reported an increased risk of chronic kidney disease (CKD) outcomes after long-term exposure (more than 1 year) to particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5). However, the conclusions remain inconsistent. Therefore, we conducted this meta-analysis to examine the association between long-term PM2.5 exposure and CKD outcomes. A literature search was conducted in PubMed, Scopus, Cochrane Central Register of Controlled trials, and Embase for relevant studies published until August 10, 2023. The main outcomes were incidence and prevalence of CKD as well as incidence of end-stage kidney disease (ESKD). The random-effect model meta‐analyses were used to estimate the risk of each outcome among studies. Twenty two studies were identified, including 14 cohort studies, and 8 cross-sectional studies, with a total of 7,967,388 participants. This meta-analysis revealed that each 10 μg/m3 increment in PM2.5 was significantly associated with increased risks of both incidence and prevalence of CKD [adjusted odds ratio (OR) 1.31 (95% confidence interval (CI) 1.24 to 1.40), adjusted OR 1.31 (95% CI 1.03 to 1.67), respectively]. In addition, the relationship with ESKD incidence is suggestive of increased risk but not conclusive (adjusted OR 1.16; 95% CI 1.00 to 1.36). The incidence and prevalence of CKD outcomes had a consistent association across all subgroups and adjustment variables. Our study observed an association between long-term PM2.5 exposure and the risks of CKD. However, more dedicated studies are required to show causation that warrants urgent action on PM2.5 to mitigate the global burden of CKD.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje