The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process
Autor: | Ikhsan Maulidi, Mahyus Ihsan, Vina Apriliani |
---|---|
Jazyk: | indonéština |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Desimal, Vol 3, Iss 3, Pp 271-278 (2020) |
Druh dokumentu: | article |
ISSN: | 2613-9073 2613-9081 |
DOI: | 10.24042/djm.v3i3.6374 |
Popis: | In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |