ВИЯВЛЕННЯ ФЕЙКОВИХ ОБЛІКОВИХ ЗАПИСІВ В СОЦІАЛЬНИХ МЕРЕЖАХ

Autor: Olesia Voitovych, Leonid Kupershtein, Vitalii Holovenko
Jazyk: English<br />Ukrainian
Rok vydání: 2022
Předmět:
Zdroj: Кібербезпека: освіта, наука, техніка, Vol 2, Iss 18, Pp 86-98 (2022)
Druh dokumentu: article
ISSN: 2663-4023
DOI: 10.28925/2663-4023.2022.18.8698
Popis: Соціальні мережі все частіше використовуються як джерело інформації, в тому числі про події під час війни. Фейкові акаунти в соціальних мережах часто використовуються для різноманітних кібератак, інформаційно-психологічних операцій та маніпулювання суспільною думкою під час війни. Проведено аналіз методів дослідження соціальних мереж, досліджено основні показники та ознаки фейкових акаунтів у мережі Facebook. Кожний показник ідентифікується певною кількість балів залежно від умов від 0 до 3, які вказують на те, наскільки кожен із них впливає на висновок про фейковість облікового запису. Рівні впливу мають такі значення: 0 – не впливає, 1 – слабкий вплив, 2 – значний вплив, 3 – критичний вплив. Наприклад, якщо у рівень впливу у деякого параметра визначений як 3 - це означає, що даний параметр суттєво вказує на фейковість облікового запису. В іншому випадку, якщо показник знаходиться на рівні 0 або 1 - це означає, що таке значення параметру більш властиве реальному обліковому запису. Таким чином, за рівнем кожного з параметрів ми робимо висновок про фейковість або реальність певного акаунта. Аналізуються такі параметри облікового запису: лайки, друзі, пости та статуси, особиста інформація про користувача та фотографії з урахуванням їх можливих параметрів та впливу на статус облікового запису. Кожна метрика віднесена до відповідних категорій для зручності їх аналізу. Розроблено систему підтримки прийняття рішень щодо фейковості облікового запису соціальної мережі Facebook на основі метода опорних векторів у якості класифікатора, який на вхід отримує 9 параметрів, що характеризують обліковий запис і на виході дає передбачення чи акаунт реального користувача чи ні. Було проведено серію експериментальних досліджень, у яких реалізовано аналіз акаунтів. Точність класифікатора виявлення фейкових акаунтів після навчання на тестових даних становить 97%.
Databáze: Directory of Open Access Journals