Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments

Autor: Idongesit Ekerete, Matias Garcia-Constantino, Yohanca Diaz-Skeete, Chris Nugent, James McLaughlin
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Sensors, Vol 21, Iss 22, p 7560 (2021)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s21227560
Popis: The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, disadvantages such as limited battery life and users’ inability to remember to charge and wear the devices are often the challenges for their usage. In addition, video cameras, which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs) for data collection and processing during SPAREs in home environments. The present work aims to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion. Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje