Effect of replacing soybean meal with Hermetia illucens meal on cecal microbiota, liver transcriptome, and plasma metabolome of broilers

Autor: Simone Beller, Sarah M. Grundmann, Klara Pies, Erika Most, Sven Schuchardt, Waldemar Seel, Marie-Christine Simon, Klaus Eder, Robert Ringseis
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Poultry Science, Vol 103, Iss 5, Pp 103635- (2024)
Druh dokumentu: article
ISSN: 0032-5791
DOI: 10.1016/j.psj.2024.103635
Popis: ABSTRACT: Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome, and the cecal microbiota in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups and fed 3 different diets with either 0% (HI0), 7.5% (HI7.5), or 15% (HI15) defatted HI meal for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield, and apparent ileal digestibility (AID) of 5 amino acids were higher in group HI15 than in group HI0 (P < 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid, and isobutyric acid in the cecal digesta were lower in group HI15 than in the other 2 groups (P < 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs. HI0, respectively, (P < 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the 3 groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.
Databáze: Directory of Open Access Journals