Model Predictive Control of Parabolic PDE Systems under Chance Constraints

Autor: Ruslan Voropai, Abebe Geletu, Pu Li
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics, Vol 11, Iss 6, p 1372 (2023)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math11061372
Popis: Model predictive control (MPC) heavily relies on the accuracy of the system model. Nevertheless, process models naturally contain random parameters. To derive a reliable solution, it is necessary to design a stochastic MPC. This work studies the chance constrained MPC of systems described by parabolic partial differential equations (PDEs) with random parameters. Inequality constraints on time- and space-dependent state variables are defined in terms of chance constraints. Using a discretization scheme, the resulting high-dimensional chance constrained optimization problem is solved by our recently developed inner–outer approximation which renders the problem computationally amenable. The proposed MPC scheme automatically generates probability tubes significantly simplifying the derivation of feasible solutions. We demonstrate the viability and versatility of the approach through a case study of tumor hyperthermia cancer treatment control, where the randomness arises from the thermal conductivity coefficient characterizing heat flux in human tissue.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje