Autor: |
Mark B. Nottle, Evelyn J. Salvaris, Nella Fisicaro, Stephen McIlfatrick, Ivan Vassiliev, Wayne J. Hawthorne, Philip J. O’Connell, Jamie L. Brady, Andrew M. Lew, Peter J. Cowan |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-017-09030-6 |
Popis: |
Abstract Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|