Autor: |
Didem P. Aykas, Alejandra Urtubia, Kevin Wong, Luju Ren, Claudia López-Lira, Luis E. Rodriguez-Saona |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Molecules, Vol 27, Iss 4, p 1161 (2022) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules27041161 |
Popis: |
Current assays for acrylamide screening rely heavily on LC-MS/MS or GC-MS, techniques that are not suitable to support point of manufacturing verification because it can take several weeks to receive results from a laboratory. A portable sensor that can detect acrylamide levels in real-time would enable in-house testing to safeguard both the safety of the consumer and the economic security of the agricultural supplier. Our objective was to develop a rapid, accurate, and real-time screening technique to detect the acrylamide content in par-fried frozen French fries based on a portable infrared device. Par-fried French fries (n = 70) were manufactured at times ranging from 1 to 5.5 min at 180 °C to yield a wide range of acrylamide levels. Spectra of samples were collected using a portable FT-IR device operating from 4000 to 700 cm−1. Acrylamide was extracted using QuEChERS and quantified using uHPLC-MS/MS. Predictive algorithms were generated using partial least squares regression (PLSR). Acrylamide levels in French fries ranged from 52.0 to 812.8 µg/kg. The best performance of the prediction algorithms required transformation of the acrylamide levels using a logarithm function with models giving a coefficient of correlation (Rcv) of 0.93 and RPD as 3.8, which means the mid-IR model can be used for process control applications. Our data corroborate the potential of portable infrared devices for acrylamide screening of high-risk foods. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|