Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor

Autor: Faten Bashar Kamal Eddin, Yap Wing Fen, Nurul Illya Muhamad Fauzi, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Nur Alia Sheh Omar, Muhammad Fahmi Anuar, Hazwani Suhaila Hashim, Amir Reza Sadrolhosseini, Huda Abdullah
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nanomaterials, Vol 12, Iss 11, p 1799 (2022)
Druh dokumentu: article
ISSN: 2079-4991
DOI: 10.3390/nano12111799
Popis: Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Databáze: Directory of Open Access Journals