Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism

Autor: Jie Zhang, Søren D. Petersen, Tijana Radivojevic, Andrés Ramirez, Andrés Pérez-Manríquez, Eduardo Abeliuk, Benjamín J. Sánchez, Zak Costello, Yu Chen, Michael J. Fero, Hector Garcia Martin, Jens Nielsen, Jay D. Keasling, Michael K. Jensen
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-17910-1
Popis: In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s yeast.
Databáze: Directory of Open Access Journals