Autor: |
Ritesh Bhola, Sounak Biswas, Md Mursalin Islam, Kedar Damle |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Physical Review X, Vol 12, Iss 2, p 021058 (2022) |
Druh dokumentu: |
article |
ISSN: |
2160-3308 |
DOI: |
10.1103/PhysRevX.12.021058 |
Popis: |
The classic combinatorial construct of maximum matchings probes the random geometry of regions with local sublattice imbalance in a site-diluted bipartite lattice. We demonstrate that these regions, which host the monomers of any maximum matching of the lattice, control the localization properties of a zero-energy quantum particle hopping on this lattice. The structure theory of Dulmage and Mendelsohn provides us with a way of identifying a complete and nonoverlapping set of such regions. This motivates our large-scale computational study of the Dulmage-Mendelsohn decomposition of site-diluted bipartite lattices in two and three dimensions. Our computations uncover an interesting universality class of percolation associated with the end-to-end connectivity of such monomer-carrying regions with local sublattice imbalance, which we dub Dulmage-Mendelsohn percolation. Our results imply the existence of a monomer percolation transition in the classical statistical mechanics of the associated maximally packed dimer model and the existence of a phase with area-law entanglement entropy of arbitrary many-body eigenstates of the corresponding quantum dimer model. They also have striking implications for the nature of collective zero-energy Majorana fermion excitations of bipartite networks of Majorana modes localized on sites of diluted lattices, for the character of topologically protected zero-energy wavefunctions of the bipartite random hopping problem on such lattices, and thence for the corresponding quantum percolation problem, and for the nature of low-energy magnetic excitations in bipartite quantum antiferromagnets diluted by a small density of nonmagnetic impurities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|