Autor: |
Juan DU, Xiaojing YU, Xiaodong LI, Tianqi AO |
Jazyk: |
čínština |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Gaoyuan qixiang, Vol 43, Iss 2, Pp 366-380 (2024) |
Druh dokumentu: |
article |
ISSN: |
1000-0534 |
DOI: |
10.7522/j.issn.1000-0534.2023.00065 |
Popis: |
Reliable precipitation information is particularly important for understanding the water balance and water cycle processes in the Qinghai-Xizang Plateau.As a new generation of satellite precipitation data, IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement) represents an advanced iteration in satellite precipitation data, characterized by expanded coverage and heightened spatiotemporal resolution.However, due to the complex terrain in the Qinghai-Xizang Plateau, IMERG still has great uncertainty in the plateau region.In view of this, this study performs bias correction of IMERG daily precipitation data based on the Quantile Delta Mapping (QDM) method.The transfer function is established seasonally using CMFD (China Meteorological Forcing Dataset) precipitation and IMERG daily precipitation data during 2001 -2010 to correct IMERG daily precipitation during 2011 -2014.The results show that: (1) The QDM method can effectively correct the frequency, value, and spatial distribution of IMERG precipitation products, and the corrections are more effective for extreme precipitation and large negative deviation regions.The probability distribution of corrected IMERG daily precipitation is closer to that of the observations, and the precipitation deviation is more in line with the normal distribution.Monthly precipitation and the spatial distribution characteristics of annual and seasonal precipitation are improved.(2) The root mean square error of the corrected daily precipitation is reduced from 1.49 mm·d-1 to 1.26 mm·d-1 with an improvement by 15.44%.The critical success index CSI, probability of detection POD, false alarm rate FAR, precision rate, and Fscore of the corrected daily precipitation in different precipitation intensities are improved, and the Bias score of tiny and torrential precipitation is enhanced.(3) After correction, the extreme precipitation is significantly improved, and the mean values of the simple daily intensity index (SDII) and percentile-based threshold indices (R95p and R99p) are closer to the observed values.The spatial distribution of extreme precipitation is effectively displayed, and the bias of extreme precipitation is reduced from over 30% to within 5%.The root mean square error of SDII, R95p, and R99p is reduced from 1.59, 6.54, and 14.89 mm·d-1 to 0.65, 3.01, and 8.99 mm·d-1 with the accuracy improved by 59.12%, 53.98%, and 39.62%, respectively.This study verifies the applicability of the Quantile Delta Mapping method in the Tibetan Plateau, which is beneficial for obtaining more accurate precipitation data for meteorological and hydrological studies in the region. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|