Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment

Autor: Moreno M. S. Rodrigues, Beatriz Barreto-Duarte, Caian L. Vinhaes, Mariana Araújo-Pereira, Eduardo R. Fukutani, Keityane Bone Bergamaschi, Afrânio Kristki, Marcelo Cordeiro-Santos, Valeria C. Rolla, Timothy R. Sterling, Artur T. L. Queiroz, Bruno B. Andrade
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Public Health, Vol 24, Iss 1, Pp 1-9 (2024)
Druh dokumentu: article
ISSN: 1471-2458
DOI: 10.1186/s12889-024-18815-0
Popis: Abstract Background Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU. Here we developed a score to predict the risk of LTFU during anti-TB treatment (ATT) in a nationwide cohort of cases using clinical data reported to the Brazilian Notifiable Disease Information System (SINAN). Methods We performed a retrospective study of all TB cases reported to SINAN between 2015 and 2022; excluding children (
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje