The FGFR2c/PKCε Axis Controls MCL-1-Mediated Invasion in Pancreatic Ductal Adenocarcinoma Cells: Perspectives for Innovative Target Therapies
Autor: | Danilo Ranieri, Deborah French, Flavia Persechino, Luisa Guttieri, Maria Rosaria Torrisi, Francesca Belleudi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Biomedicines, Vol 10, Iss 7, p 1652 (2022) |
Druh dokumentu: | article |
ISSN: | 10071652 2227-9059 |
DOI: | 10.3390/biomedicines10071652 |
Popis: | Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy whose main characterizations are Kirsten Rat Sarcoma-activating mutations (KRAS) and a highly aggressive phenotype. Based on our recent findings demonstrating that the highly aberrant expression of the mesenchymal isoform of Fibroblast Growth Factor Receptor 2 (FGFR2c) in PDAC cells activates Protein-Kinase C Epsilon (PKCε), which in turn controls receptor-mediated epithelial to mesenchymal transition (EMT), here we investigated the involvement of these signaling events in the establishment of additional tumorigenic features. Using PDAC cell lines expressing divergent levels of the FGFR2c and stable protein depletion approaches by short hairpin RNA (shRNA), we found that FGFR2c expression and its PKCε downstream signaling are responsible for the invasive response to Fibroblast Growth Factor 2 (FGF2) and for anchorage-independent growth. In addition, in vitro clonogenic assays, coupled with the check of the amount of cleaved Poly Adenosine Diphosphate-Ribose Polymerase 1 (PARP1) by Western blot, highlighted the involvement of both FGFR2c and PKCε in cell viability. Finally, monitoring of Myeloid Cell Leukemia 1 (MCL-1) expression and Sarcoma kinase family (SRC) phosphorylation suggested that the FGFR2c/PKCε axis could control cell migration/invasion possibly via MCL-1/SRC-mediated reorganization of the actin cytoskeleton. Being PKCs RAS-independent substrates, the identification of PKCε as a hub molecule downstream FGFR2c at the crossroad of signaling networks governing the main malignant tumor hallmarks could represent an important advance towards innovative target therapies overcoming RAS. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |