Linear Forest mP3 Plus a Longer Path Pn Becoming Antimagic
Autor: | Jen-Ling Shang, Fei-Huang Chang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematics, Vol 10, Iss 12, p 2036 (2022) |
Druh dokumentu: | article |
ISSN: | 10122036 2227-7390 |
DOI: | 10.3390/math10122036 |
Popis: | An edge labeling of a graph G is a bijection f from E(G) to a set of |E(G)| integers. For a vertex u in G, the induced vertex sum of u, denoted by f+(u), is defined as f+(u)=∑uv∈E(G)f(uv). Graph G is said to be antimagic if it has an edge labeling g such that g(E(G))={1,2,⋯,|E(G)|} and g+(u)≠g+(v) for any pair u,v∈V(G) with u≠v. A linear forest is a union of disjoint paths of orders greater than one. Let mPk denote a linear forest consisting of m disjoint copies of path Pk. It is known that mP3 is antimagic if and only if m=1. In this study, we add a disjoint path Pn (n≥4) to mP3 and develop a necessary condition and a sufficient condition whereby the new linear forest mP3⋃Pn may be antimagic. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |