Computer Vision as a Tool to Support Quality Control and Robotic Handling of Fruit: A Case Study
Autor: | Estêvão Vale Filho, Luan Lang, Martim L. Aguiar, Rodrigo Antunes, Nuno Pereira, Pedro Dinis Gaspar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Applied Sciences, Vol 14, Iss 21, p 9727 (2024) |
Druh dokumentu: | article |
ISSN: | 14219727 2076-3417 |
DOI: | 10.3390/app14219727 |
Popis: | The food industry increasingly depends on technological assets to improve the efficiency and accuracy of fruit processing and quality control. This article enhances the application of computer vision with collaborative robotics to create a non-destructive system. The system can automate the detection and handling of fruits, particularly tomatoes, reducing the reliance on manual labor and minimizing damage during processing. This system was developed with a Raspberry Pi 5 to capture images of the fruit using a PiCamera module 3. After detecting the object, a command is sent to a Universal Robotics UR3e robotic arm via Ethernet cable, using Python code that integrates company functions and functions developed specifically for this application. Four object detection models were developed using the TensorFlow Object Detection API, converted to TensorFlow Lite, to detect two types of fruit (tomatoes) using deep learning techniques. Each fruit had two versions of the models. The models obtained 67.54% mAP for four classes and 64.66% mAP for two classes, A rectangular work area was created for the robotic arm and computer vision to work together. After 640 manipulation tests, a reliable area of 262 × 250 mm was determined for operating the system. In fruit sorting facilities, this system can be employed to automatically classify fruits based on size, ripeness, and quality. This ensures consistent product standards and reduces waste by sorting fruits according to pre-defined criteria. The system’s ability to detect multiple fruit types with high accuracy enables it to integrate into existing workflows, thereby increasing productivity and profitability for food processing companies. Additionally, the non-destructive nature of this technology allows for the inspection of fruits without causing any damage, ensuring that only the highest-quality produce is selected for further processing. This application can enhance the speed and precision of quality control processes, leading to improved product quality and customer satisfaction. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |