Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups

Autor: Giovanni Calvaruso, Eduardo García-Río
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 005 (2010)
Druh dokumentu: article
ISSN: 1815-0659
DOI: 10.3842/SIGMA.2010.005
Popis: Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least ½n(n−1)+1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25-33]. We shall prove that the curvature tensor of these spaces satisfy several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov-Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov-Petrova and curvature-curvature commuting manifolds.
Databáze: Directory of Open Access Journals