Popis: |
Abstract Background The pregnant women with intrahepatic cholestasis were at high risk of fetal distress, preterm birth and unexpected stillbirth. Intrahepatic cholestasis of pregnancy (ICP) was mainly caused by disorder of bile acid metabolism, whereas the specific mechanism was obscure. Methods We performed proteomics analysis of 10 ICP specimens and 10 placenta specimens from patients without ICP through data-independent acquisition (DIA) technique to disclose differentially expressed proteins. We executed metabolomic analysis of 30 ICP specimens and 30 placenta specimens from patients without ICP through UPLC-MS/MS to identify differentially expressed metabolites. Enrichment and correlation analysis was used to obtain the direct molecular insights of ICP development. The ICP rat models were constructed to validate pathological features. Results The heatmap of proteomics analysis showed the top 30 up-regulated and 30 down-regulated proteins. The metabolomic analysis revealed 20 richer and 4 less abundant metabolites in ICP samples compared with placenta specimens from patients without ICP, and enrichment pathways by these metabolites included primary bile acid biosynthesis, cholesterol metabolism, bile secretion, nicotinate and nicotinamide metabolism, purine metabolism and metabolic pathways. Combined analysis of multiple omics results demonstrated that bile acids such as Glycohyocholic acid, Glycine deoxycholic acid, beta-Muricholic acid, Noncholic acid, cholic acid, Gamma-Mercholic Acid, alpha-Muricholic acid and Glycochenodeoxycholic Aicd were significantly associated with the expression of GLRX3, MYL1, MYH7, PGGT1B, ACTG1, SP3, LACTB2, C2CD5, APBB2, IPO9, MYH2, PPP3CC, PIN1, BLOC1S1, DNAJC7, RASAL2 and ATCN3 etc. The core protein ACAT2 was involved in lipid metabolic process and animal model showed that ACAT2 was up-regulated in placenta and liver of pregnant rats and fetal rats. The neonates had low birth weight and Safranin O-Fast green FCF staining of animal models showed that poor osteogenic and chondrogenic differentiation of fetal rats. Conclusion Multiple metabolites-alpha-Muricholic acid, beta-Muricholic acid, Glycine deoxycholic acid and Glycochenodeoxycholic Acid etc. were perfect biomarkers to predict occurrence of ICP. Bile acids were significantly associated with varieties of protein expression and these proteins were differentially expressed in ICP samples. Our study provided several biomarkers for ICP detection and potential therapeutic targets for ICP development. |