Autor: |
Ines Sansa, Zina Boussaada, Najiba Mrabet Bellaaj |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Energies, Vol 14, Iss 21, p 6920 (2021) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en14216920 |
Popis: |
The prediction of solar radiation has a significant role in several fields such as photovoltaic (PV) power production and micro grid management. The interest in solar radiation prediction is increasing nowadays so efficient prediction can greatly improve the performance of these different applications. This paper presents a novel solar radiation prediction approach which combines two models, the Auto Regressive Moving Average (ARMA) and the Nonlinear Auto Regressive with eXogenous input (NARX). This choice has been carried out in order to take the advantages of both models to produce better prediction results. The performance of the proposed hybrid model has been validated using a real database corresponding to a company located in Barcelona north. Simulation results have proven the effectiveness of this hybrid model to predict the weekly solar radiation averages. The ARMA model is suitable for small variations of solar radiation while the NARX model is appropriate for large solar radiation fluctuations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|