The construction of fractions of $\Gamma$-module over commutative $\Gamma$-ring
Autor: | Leila Amjadi, Mansoor Ghadiri, Saeed Mirvakili |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Mahani Mathematical Research, Vol 13, Iss 1, Pp 251-267 (2023) |
Druh dokumentu: | article |
ISSN: | 2251-7952 2645-4505 |
DOI: | 10.22103/jmmr.2023.20890.1390 |
Popis: | The aim of this paper is to construct fraction of $\Gamma$-module over commutative $\Gamma$-ring. There should be an appropriate set $S$ of elements in a $\Gamma$-ring $R$ to be used as $\Gamma$-module of fractions. Then we study the homomorphisms of $\Gamma$-module which can lead to related basic results. We show that for every $\Gamma$-module $M$, $S^{-1}(0:_R M)=(0:_{S^{-1}R} S^{-1}M).$ Also, if $M$ is a finitely generated $R_\Gamma$-module, then $S^{-1}M$ is finitely generated. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |