Autor: |
Liang Xue, Jiafa Xu, Donal O'Regan |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 8, Pp 19566-19581 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2023998?viewType=HTML |
Popis: |
In our current work we investigate the following critical quasilinear Schrödinger equation $ -\Delta \Theta+\mathcal V(x)\Theta-\Delta (\Theta^2)\Theta = |\Theta|^{22^*-2}\Theta+\lambda \mathcal K(x)g(\Theta), \ x \ \in \mathbb R^N, $ where $ N\geq 3 $, $ \lambda > 0 $, $ \mathcal V, \ \mathcal K\in C(\mathbb R^N, \mathbb R^+) $ and $ g\in C(\mathbb R, \mathbb R) $ has a quasicritical growth condition. We use the dual approach and the mountain pass theorem to show that the considered problem has a positive solution when $ \lambda $ is a large parameter. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|