Optimization of Fast Non-Local Means Noise Reduction Algorithm Parameter in Computed Tomographic Phantom Images Using 3D Printing Technology

Autor: Hajin Kim, Sewon Lim, Minji Park, Kyuseok Kim, Seong-Hyeon Kang, Youngjin Lee
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Diagnostics, Vol 14, Iss 15, p 1589 (2024)
Druh dokumentu: article
ISSN: 2075-4418
DOI: 10.3390/diagnostics14151589
Popis: Noise in computed tomography (CT) is inevitably generated, which lowers the accuracy of disease diagnosis. The non-local means approach, a software technique for reducing noise, is widely used in medical imaging. In this study, we propose a noise reduction algorithm based on fast non-local means (FNLMs) and apply it to CT images of a phantom created using 3D printing technology. The self-produced phantom was manufactured using filaments with similar density to human brain tissues. To quantitatively evaluate image quality, the contrast-to-noise ratio (CNR), coefficient of variation (COV), and normalized noise power spectrum (NNPS) were calculated. The results demonstrate that the optimized smoothing factors of FNLMs are 0.08, 0.16, 0.22, 0.25, and 0.32 at 0.001, 0.005, 0.01, 0.05, and 0.1 of noise intensities, respectively. In addition, we compared the optimized FNLMs with noisy, local filters and total variation algorithms. As a result, FNLMs showed superior performance compared to various denoising techniques. Particularly, comparing the optimized FNLMs to the noisy images, the CNR improved by 6.53 to 16.34 times, COV improved by 6.55 to 18.28 times, and the NNPS improved by 10−2 mm2 on average. In conclusion, our approach shows significant potential in enhancing CT image quality with anthropomorphic phantoms, thus addressing the noise issue and improving diagnostic accuracy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje