MePMe-seq: antibody-free simultaneous m6A and m5C mapping in mRNA by metabolic propargyl labeling and sequencing

Autor: Katja Hartstock, Nadine A. Kueck, Petr Spacek, Anna Ovcharenko, Sabine Hüwel, Nicolas V. Cornelissen, Amarnath Bollu, Christoph Dieterich, Andrea Rentmeister
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-19 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-42832-z
Popis: Abstract Internal modifications of mRNA have emerged as widespread and versatile regulatory mechanism to control gene expression at the post-transcriptional level. Most of these modifications are methyl groups, making S-adenosyl-L-methionine (SAM) a central metabolic hub. Here we show that metabolic labeling with a clickable metabolic precursor of SAM, propargyl-selenohomocysteine (PSH), enables detection and identification of various methylation sites. Propargylated A, C, and G nucleosides form at detectable amounts via intracellular generation of the corresponding SAM analogue. Integration into next generation sequencing enables mapping of N 6-methyladenosine (m6A) and 5-methylcytidine (m5C) sites in mRNA with single nucleotide precision (MePMe-seq). Analysis of the termination profiles can be used to distinguish m6A from 2′-O-methyladenosine (Am) and N1-methyladenosine (m1A) sites. MePMe-seq overcomes the problems of antibodies for enrichment and sequence-motifs for evaluation, which was limiting previous methodologies. Metabolic labeling via clickable SAM facilitates the joint evaluation of methylation sites in RNA and potentially DNA and proteins.
Databáze: Directory of Open Access Journals