Autor: |
Aftab Nazeer, Shreedhar Maskey, Thomas Skaugen, Michael E. McClain |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-16 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-25673-6 |
Popis: |
Abstract The Upper Indus Basin (UIB) heavily depends on its frozen water resources, and an accelerated melt due to the projected climate change may significantly alter future water availability. The future hydro-climatic regime and water availability of the Hunza basin (a sub-basin of UIB) were analysed using the newly released Coupled Model Intercomparison Project Phase 6 (CMIP6) climate projections. A data and parameter parsimonious precipitation-runoff model, the Distance Distribution Dynamics (DDD) model, was used with energy balance-based subroutines for snowmelt, glacier melt and evapotranspiration. The DDD model was set up for baseline (1991–2010), mid-century (2041–2060) and end-century (2081–2100) climates projections from two global circulation models (GCM), namely EC-Earth3 and MPI-ESM. The projections indicate a substantial increase in temperature (1.1–8.6 °C) and precipitation (12–32%) throughout the twenty-first century. The simulations show the future flow increase between 23–126% and the future glacier melt increase between 30–265%, depending on the scenarios and GCMs used. Moreover, the simulations suggest an increasing glacier melt contribution from all elevations with a significant increase from the higher elevations. The findings provide a basis for planning and modifying reservoir operation strategies with respect to hydropower generation, irrigation withdrawals, flood control, and drought management. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|