Effective Image Restorations Using a Novel Spatial Adaptive Prior

Autor: Hao Liwei, Chen Wufan, Dong Yingmei, Chen Yang, Li Yinsheng, Luo Limin
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: EURASIP Journal on Advances in Signal Processing, Vol 2010, Iss 1, p 508089 (2010)
Druh dokumentu: article
ISSN: 1687-6172
1687-6180
Popis: Abstract Bayesian or Maximum a posteriori (MAP) approaches can effectively overcome the ill-posed problems of image restoration or deconvolution through incorporating a priori image information. Many restoration methods, such as nonquadratic prior Bayesian restoration and total variation regularization, have been proposed with edge-preserving and noise-removing properties. However, these methods are often inefficient in restoring continuous variation region and suppressing block artifacts. To handle this, this paper proposes a Bayesian restoration approach with a novel spatial adaptive (SA) prior. Through selectively and adaptively incorporating the nonlocal image information into the SA prior model, the proposed method effectively suppress the negative disturbance from irrelevant neighbor pixels, and utilizes the positive regularization from the relevant ones. A two-step restoration algorithm for the proposed approach is also given. Comparative experimentation and analysis demonstrate that, bearing high-quality edge-preserving and noise-removing properties, the proposed restoration also has good deblocking property.
Databáze: Directory of Open Access Journals