Popis: |
This research work proposes an eight-term novel four-scroll chaotic system with cubic nonlinearity and analyses its fundamental properties such as dissipativity, equilibria, symmetry and invariance, Lyapunov exponents and KaplanYorke dimension. The phase portraits of the novel chaotic system, which are obtained in this work by using MATLAB, depict the four-scroll attractor of the system. For the parameter values and initial conditions chosen in this work, the Lyapunov exponents of the novel four-scroll chaotic system are obtained as L1 = 0.75335, L2 = 0 and L3 = −22.43304. Also, the Kaplan-Yorke dimension of the novel four-scroll chaotic system is obtained as DKY = 2.0336. Finally, an electronic circuit realization of the novel four-scroll chaotic system is presented by using SPICE to confirm the feasibility of the theoretical model. |