BARTReact: SELFIES-driven precision in reaction modeling

Autor: Daniel Farfán, Carolina Gómez-Márquez, Dania Sandoval-Nuñez, Omar Paredes, J. Alejandro Morales
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Franklin Open, Vol 7, Iss , Pp 100106- (2024)
Druh dokumentu: article
ISSN: 2773-1863
DOI: 10.1016/j.fraope.2024.100106
Popis: We introduce Bidirectional and Auto-Regressive Transformer for Reactions (BARTReact), a self-supervised deep learning model designed to predict chemical reactions. Built on the powerful Bidirectional and Auto-Regressive Transformer (BART) architecture, BARTReact is trained using the SELF-referencIng Embedded Strings (SELFIES), a molecular representation that ensures the production of only viable molecules, achieving an outstanding accuracy of 98.6 %.
Databáze: Directory of Open Access Journals