Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function

Autor: Abdullah Alatawi, Maslina Darus, Badriah Alamri
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Symmetry, Vol 15, Iss 4, p 785 (2023)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym15040785
Popis: In this research, a novel linear operator involving the Borel distribution and Mittag-Leffler functions is introduced using Hadamard products or convolutions. This operator is utilized to develop new subfamilies of bi-univalent functions via the principle of subordination with Gegenbauer orthogonal polynomials. The investigation also focuses on the estimation of the coefficients |aℓ|(ℓ=2,3) and the Fekete–Szegö inequality for functions belonging to these subfamilies of bi-univalent functions. Several corollaries and implications of the findings are discussed. Overall, this study presents a new approach for constructing bi-univalent functions and provides valuable insights for further research in this area.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje