On the domination of triangulated discs
Autor: | Noor A'lawiah Abd Aziz, Nader Jafari Rad, Hailiza Kamarulhaili |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematica Bohemica, Vol 148, Iss 4, Pp 555-560 (2023) |
Druh dokumentu: | article |
ISSN: | 0862-7959 2464-7136 |
DOI: | 10.21136/MB.2022.0122-21 |
Popis: | Let $G$ be a $3$-connected triangulated disc of order $n$ with the boundary cycle $C$ of the outer face of $G$. Tokunaga (2013) conjectured that $G$ has a dominating set of cardinality at most $\frac14(n+2)$. This conjecture is proved in Tokunaga (2020) for $G-C$ being a tree. In this paper we prove the above conjecture for $G-C$ being a unicyclic graph. We also deduce some bounds for the double domination number, total domination number and double total domination number in triangulated discs. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |