On the domination of triangulated discs

Autor: Noor A'lawiah Abd Aziz, Nader Jafari Rad, Hailiza Kamarulhaili
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematica Bohemica, Vol 148, Iss 4, Pp 555-560 (2023)
Druh dokumentu: article
ISSN: 0862-7959
2464-7136
DOI: 10.21136/MB.2022.0122-21
Popis: Let $G$ be a $3$-connected triangulated disc of order $n$ with the boundary cycle $C$ of the outer face of $G$. Tokunaga (2013) conjectured that $G$ has a dominating set of cardinality at most $\frac14(n+2)$. This conjecture is proved in Tokunaga (2020) for $G-C$ being a tree. In this paper we prove the above conjecture for $G-C$ being a unicyclic graph. We also deduce some bounds for the double domination number, total domination number and double total domination number in triangulated discs.
Databáze: Directory of Open Access Journals