The singleton degrees of the $\Sigma^0_2$ sets are not dense
Autor: | Kent, Thomas F., Ng, Keng Meng, Sorbi, Andrea |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Answering an open question raised by Cooper, we show that there exist $\Delta^0_2$ sets $D$ and $E$ such that the singleton degree of $E$ is a minimal cover of the singleton degree of $D$. This shows that the $\Sigma^{0}_{2}$ singleton degrees, and the $\Delta^{0}_{2}$ singleton degrees, are not dense (and consequently the $\Pi^0_2$ $Q$-degrees, and the $\Delta^{0}_{2}$ $Q$-degrees, are not dense). Moreover $D$ and $E$ can be built to lie in the same enumeration degree. |
Databáze: | arXiv |
Externí odkaz: |