Autor: |
Pang, Yiming, Castro, Joshua E., Steiner, Trevor J., Duan, Liao, Tagliavacche, Noemi, Borghi, Massimo, Thiel, Lillian, Lewis, Nicholas, Bowers, John E., Liscidini, Marco, Moody, Galan |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an AlGaAs-on-insulator photonic device by multiplexing an array of 20 small-radius microresonators each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to $50$ GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to 95$\%$, coincidence-to-accidental ratios exceeding 5,000, and an on-chip pair rate up to 2.6 GHz/mW$^2$ per comb line -- more than 40 times improvement over prior work. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding 87$\%$ (90$\%$ with background correction) and detected frequency-bin entanglement rates up to 7 kHz ($\sim 70$ MHz on-chip pair rate) using $\sim 250$ $\mu$W pump power. Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. |
Databáze: |
arXiv |
Externí odkaz: |
|