Higher-order Differentiable Rendering

Autor: Zican, Wang, Fischer, Michael, Ritschel, Tobias
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We derive methods to compute higher order differentials (Hessians and Hessian-vector products) of the rendering operator. Our approach is based on importance sampling of a convolution that represents the differentials of rendering parameters and shows to be applicable to both rasterization and path tracing. We further suggest an aggregate sampling strategy to importance-sample multiple dimensions of one convolution kernel simultaneously. We demonstrate that this information improves convergence when used in higher-order optimizers such as Newton or Conjugate Gradient relative to a gradient descent baseline in several inverse rendering tasks.
Databáze: arXiv